Flex Life Cycle

Published by Manfred Karrer on Thursday, 20 of January , 2011 at 23:41

After working 10 years with Flash and 3 years with Flex I am still not convinced that the Flex Life Cycle is necessary.

I discussed this topic already with many developers but nobody could really give me a satisfying answer.
So I spread out my thoughts now to the public in the hope to get some valuable feedback.

Of course I am familiar with the concept of the Flex Life Cycle and the “elastic racetrack” behavior of the Flash Player.

The reason why I am not a friend of this concept is because it introduces an asynchronous code execution where a synchronous code execution would be much easier and faster.

In all my ActionScript based projects it was never necessary to use this pattern and defer code execution to another frame (or Render Event).
At bwin we have built a similar application as the current Flex-based Live Betting application previously in AS2, with a lot of complex components and auto layout containers, without running into any serious problems.
And to be honest the performance of the AS2 project felt somehow the same as the Flex version. But AS3 is about 10 times faster (of course that´s a bit too simple said and we did not measure the difference, but I am not the only one complaining about poor Flex Performance).

So isn´t it valid to question the concepts Flex is based on?

I am sure the architects at Adobe have had good reasons why they decided to introduce this pattern.
In the Docs and Blogosphere one can find several papers about it, but none of these explanations satisfied me, and some are not telling the full truth (that code execution is deferred to another frame).

So I try to discuss some assumptions for possible reasons:

  • Avoid Performance bottlenecks
  • Keep the Frame-rendering fluidly
  • Avoid Performance penalty from unintended repeated method (setter) calls
  • Pattern for separating different concerns
  • Problems with reading out the measurements of DisplayObjects before they are rendered on screen
  • Problems with complex execution flow from auto-layout containers code

So let me add my thought to these points:
Avoid Performance bottlenecks

That was my first assumption when I started with Flex, that this pattern is used to avoid performance bottlenecks. First I thought there is a hidden mechanism for detecting code execution which is running too long and delay this execution to the next frame. After checking out the SDK code I found out that it is simply delaying the 3 phases to 3 “half-frames” (Render Events and Enter Frame Events). So if you have really heavy code your player is still freezing up for a certain time and the Life Cycle does not give you any support for solving this problem.

That leads to the next argument:
Keep the Frame-rendering fluidly

Delaying the render code to the next frame helps the Flash Player running more smoothly and fluidly. That is basically true, but in my opinion 90% of the time the Life Cycle is wasting performance. For me it is a bad trade to get maybe at startup time some more fluidly running pre-loader animation but startup time takes much longer.

Why the Life Cycle is wasting Performance?
Because code which normally would be executed in one frame is now executed over 2 frames (or more).

There is another related issue with performance:
Avoid Performance penalty from unintended repeated method (setter) calls

Assume that in a large project it could be hard to control the execution flow so that it could happen that setting a text or layout property to a component is not only applied once but unintended multiple times.
For this scenario the Life Cycle helps because the call to the setter of the property is relatively cheap, so if the setter is called 10 times instead of once it will not hurt much. Then at commitProperties the property is only applied once to the component.
Again some weird scenarios with multiple invocations of commitProperties will not hurt much because the applying of the property to the component should be protected by a “changed” flag (see best practice with the Flex Life Cycle).
Also if you need for layout code some measurements the pattern helps to avoid unnecessary and repeated code executions.
BUT - is poorly written code really the reason why this pattern was introduced? It is true that it gives you some kind of fault tolerance, performance-wise. I guess this argument should not count in professional software development, and in fact it is dangerous because it could hide some deeper problems. If your setters are called more then once, why not look for the reason and clean it up?
I know in complex situations this could be sometimes hard, and under real life circumstances and time pressure you have to deal with something like this. But it should not count as a criteria for such a basic framework design decision.

I made also some measurements to check out the performance penalties for repeatedly called setters:

With 100 000 iterations applying a changing text to a TextField (in a AS3 project) I got these results:

1. Case:
Setting the text property to a variable in a loop and then applying the already stored text to the TextField again in a loop:

setText(): 119ms applyStoredText(): 481ms

In contrast to applying the property directly to the TextField:

setAndApplyText(): 2879ms

So you can see it is much slower in the 2. Case, so the Life Cycle really helps here, because it only applies the last stored property and not the changing values in between. But again - setting multiple times unnecessary property values is another problem.

The same test with setting the x position does not deliver such a big difference, in fact it is nearly the same time consumed (40+52 vs. 114)

setXPos(): 40ms applyStoredXPos(): 52ms setAndApplyXPos(): 114ms

Let´s continue with the next point:
Pattern for separating different concerns

To have a kind of pattern which separates different concerns is basically a cool thing. So you have your code block for setting properties, another method where the properties are applied to the component, a method where the measurement is defined and another one for the layout code.

I have no really argument against this pattern, but I don´t know why it is necessary to defer some code of these phases to the next Frame. The execution of the Life Cycle methods could have been triggered also at the Render Event, then there would not have been any delay to another frame, even it still would add this nasty asynchrony.

So this pattern could make development easier but introduce asynchronous behavior where we lived in a beautiful synchronous Flash world before. In my opinion: Not a good trade.

What else?
Problems with reading out the measurements of DisplayObjects before they are rendered on screen

Remembering back to some of my Flash projects I have had sometimes strange problems with TextFields and measurement when setting text and using autosize. But I could not reproduce these problems in a test case anymore. So I am not sure if that was caused by some other stuff or maybe by differences in some older Flash Player versions? But at least in my situations these problems could always be solved without deferring code to another Frame. But at this point I am not sure if there are certain use cases where you cannot read out the size of a DisplayObject (TextField) before it is actually rendered to the screen. If there are such cases this would be a valid argument, but then I am wondering why this could not be solved on the Flash Player level instead of solving this problem at a Framework level.

And my last point:
Problems with complex execution flow from auto-layout containers code

I can imagine that complex situations with nested auto layout containers could be sometimes really tricky to handle. To avoid recursions or unnecessary calls for any possible situation in a generic framework is a tough challenge.

But also in complex situations it is a deterministic behavior, so it should be possible to solve this without the Life Cycle pattern as well. From my experience there was no problems with auto layout containers, but of course in normal project development you have limited use cases and we were not forced to deal with all the possible use cases, like Flex has to do as a generic framework.

So finally I don´t have any idea for the real reason why Adobe has introduced the Life Cycle.
Maybe it seemed that it could help solving a lot of tricky problems (auto layout containers, mixing MXML with AS code,…) and was considered as a good pattern to make development easier. Maybe the fact that Flash has a strong support for Event driven programming and the Flash developers are already used to handle this asynchrony, led to this decision?
Maybe is was a strategic decision to make Flex easier for new developers without Flash background, who were not familiar with the Flash Players frame-based execution model?

I don´t know. I really would appreciate if someone from the Flex Team could illuminate this topic.

I just have made the experience that many things where much more transparent, cleaner and faster in pure ActionScript then in Flex, and i think the Life Cycle is one of the reasons for that.
I really like the API of Flex but I am wondering why Adobe don´t give more attention to performance, specially for large scale applications.

Any comments or insights are highly appreciated!

P.S.: Just found an interesting post related to this. I 100% agree what Paul Taylor says about UIComponent, but that is another story. Ever heard about Reflex? Sounds pretty promising!

Comments (1)

Category: Actionscript, Flash, Flex, SDK

The infamous callLater()

Published by Manfred Karrer on Tuesday, 5 of May , 2009 at 23:03

At my first posts I wrote about my favorite Flex feature: Databinding
Now I will take a look at the opposite, IMHO the most precarious “feature” in Flex: callLater()

If you have a dodgy problem that a certain property is not available when it already should be and you ask someone at flexcoders you often get the advice, “try callLater” for a quick work-around. Sometimes this helps, but it leaves a bad smell, because often it´s just hiding some other problems in the code.
So when we worked on a large-scale Flex application we have used it sometimes in the beginning, but after a while we decided to avoid callLater. To find and solve the real problem is simply the better solution - and we never needed it again - there was always another solution to solve a particular problem (maybe we just have had luck).

Unpleasantly we get confronted with the fact that callLater is used inside the Framework at the heart of the layout engine.
We struggled with some strange problems. For instance we got a NullPointer exception in the updateDisplayList method of a custom component, which has already been cleaned up properly and removed from the displayList. It turned out that the layout mechanism delayed with callLater an invocation of updateDisplayList but our stuff there has already been removed and threw an exception.
It was not hard to fix, but it demonstrated us that some asynchronous stuff was going on behind the scenes which was out of our direct control.

So for me callLater leaves always a certain bad smell.

Unfortunately I never found time to really investigate how it´s implemented and what are the concepts behind it.
So it was time to catch up with this issue:
CallLater is basically a method in UIComponent which delays a passed function to the next EnterFrame OR Render event.
Often in den docs it´s just described that it will delay to the next frame, which is not correct because it could be that your function is executed already at the Render Event, which happens in the same frame and is the last opportunity where User code can be executed before the screen is rendered.

For more details about the internal concept of a frame in Flash and the relevant events see the great article by Sean Christmann:

Here is a good illustration from his article about the anatomy of a frame in Flash:
(Read more…)

Comments (4)

Category: Actionscript, Flash, Flashplayer, Flex, SDK